Основы энергообеспечения мышечной деятельности. Тренировка лактатной системы


Анаэробные лактатные способности — SportWiki энциклопедия

Анаэробные лактатные способности[править]

Реакция тела на более продолжительные серии интенсивных упражнений (продолжительностью 10-60 секунд), например, при беге на дистанциях 200 и 400 метров и при выполнении силовых подходов с количеством быстрых повторений до 50, отличается при переходе к этапу проведения коротких тренировок на выносливость. В течение первых 8-10 секунд энергия обеспечивается за счет анаэробной алактатной системы. Несмотря на то, что максимальное воспроизведение энергии за счет АТФ происходит по истечении всего пяти-шести секунд, анаэробная лактатная система становится основным источником энергии примерно через 10 секунд[1].

Анаэробная лактатная система поставляет энергию за счет распада гликогена (форма глюкозы или сахара в человеческом теле), который хранится в мышечных клетках и в клетках печени и высвобождает энергию для ресинтеза АТФ из АДФ и фосфата. В случае отсутствия кислорода во время распада гликогена образуется побочный продукт, который называется молочной кислотой. В процессе продолжительной высокоинтенсивной тренировки в мышцах накапливается большое количество молочной кислоты, что вызывает утомление и способствует постепенному снижению уровня выработки энергии.

Непрерывное использование гликогена во время упражнений в конечном итоге приводит к истощению запасов гликогена. Уровень гликогена можно с легкостью восстановить путем приема простых углеводов непосредственно после тренировки (особенно в виде углеводных порошков, таких как мальтодекстрин и амилопектин) и последующего приема сложных углеводов (крахмала), фруктов и овощей, а также в процессе продолжительного отдыха.

Тренировка лактатной системы: Зона интенсивности 2[править]

Тренировка лактатной системы повышает работоспособность спортсмена во время лактатной нагрузки, а также способность спортсмена выдерживать накопление молочной кислоты. Данная тренировка наиболее полезна для быстрых повторений продолжительностью от 15 до 90 секунд. Наиболее высокий уровень образования молочной кислоты может происходить в результате выполнения высокоинтенсивных повторений продолжительностью 40-50 секунд, при этом максимальная скорость накопления молочной кислоты происходит во время предельного усилия в промежуток времени с 12 по 16 секунду. Выработка энергии во время лактатной нагрузки улучшается за счет увеличения количества метаболических ферментов лактатной энергетической системы, а также адаптации нервной системы. В действительности, работоспособность при лактатной нагрузке (продолжительностью 10-20 секунд) имеет более существенные ограничения, оказывающие влияние на возможность нервной системы поддерживать передачу нервных импульсов к мышцам, в сравнении с метаболическими причинами.

С другой стороны, устойчивость в отношении молочной кислоты повышается в результате непрерывного удаления молочной кислоты из кровотока скелетной мускулатурой. Недавние исследования показали, что количество ферментов, переносящих молочную кислоту, увеличивается пропорционально повышению интенсивности тренировки[2]. Способность удаления молочной кислоты из кровотока и ее переноса к волокнам медленно сокращающихся мышц для использования энергии является адаптационной реакцией, которая задерживает наступление утомления и улучшает результативность при занятиях видами спорта, требующими устойчивости к воздействию молочной кислоты.

Результативность спортсмена повышается на более продолжительный период времени, если осуществляется тренировка нервной системы для поддержки передачи нервных импульсов на время лактатной нагрузки или если спортсмен может выдерживать боль, возникающую в результате ацидоза (высокая концентрация молочной кислоты в крови). Таким образом, целью тренировки в зоне интенсивности 2 являются адаптация к нервному напряжению, вызванному продолжительной нагрузкой при максимальной интенсивности, устойчивость к воздействию кислотного эффекта, возникающего вследствие накопления молочной кислоты, уменьшение воздействия молочной кислоты, повышение скорости удаления молочной кислоты из работающих мышц и увеличение физиологической и психологической устойчивости к боли во время тренировок и соревнований.

Тренировка для зоны интенсивности 2 включает следующие три разновидности:

  1. Краткосрочная лактатная мощность: проводится серия краткосрочных повторений или упражнений с максимальной или близкой к максимальной интенсивностью (продолжительностью от 3 до 10 секунд) с непродолжительными перерывами на отдых (от 15 секунд до 4 минут, в зависимости от продолжительности нагрузки, количества повторений и относительной интенсивности), после которых молочная кислота только частично выводится из системы. Физиологические последствия данного типа тренировки выражаются в устойчивости спортсмена к повышенному уровню молочной кислоты при выработке повышенной анаэробной мощности в условиях максимального ацидоза. Данный метод зачастую используется по мере приближения соревновательного сезона и начала работы систем спортсмена на максимальном уровне.
  2. Долгосрочная лактатная мощность: проводится серия долговременных повторений с максимальной или близкой к максимальной интенсивностью (продолжительностью от 10 до 20 секунд), при которой лактатная энергетическая система работает на максимальном уровне производства энергии. Данный метод является одним из наиболее высоких стресс-факторов для нервно-мышечной системы. Поэтому для повторения аналогичного качества работы спортсмен должен отдыхать в течение весьма продолжительного периода времени (от 12 до 30 минут, в зависимости от работоспособности спортсмена и количества повторений), что способствует полному удалению молочной кислоты и восстановлению центральной нервной системы. При недостаточной продолжительности отдыха восстановление является неполным, и риск получения травмы возрастает.
  3. Лактатная емкость: проводится серия долговременных повторений при высокой интенсивности (продолжительностью от 20 до 60 секунд), в результате которой образуется большое количество молочной кислоты (свыше 12 миллимоль). Для повторения аналогичного качества работы спортсмен должен отдыхать в течение периода времени средней продолжительности (от четырех до восьми минут, в зависимости от продолжительности нагрузки, количества повторений и относительной интенсивности), что способствует практически полному удалению молочной кислоты. При недостаточной продолжительности отдыха восстановление является неполным, и наблюдается сильный ацидоз. В таких условиях спортсмен вынужден уменьшать скорость выполнения повторений или упражнений ниже необходимого уровня. Соответственно, спортсмен не достигает запланированного результата в ходе тренировки, то есть, он не способен выдерживать накопление молочной кислоты. Скорее всего, окажется, что спортсмен тренирует аэробную систему.

С психологической точки зрения цель тренировки лактатной устойчивости состоит в преодолении болевого порога спортсмена. Тем не менее данный тип тренировки не следует использовать чаще двух раз в неделю, поскольку при таких тренировках спортсмен испытывает критический уровень утомления. Чрезмерные тренировки могут привести к нежелательному травматизму, перенапряжению и перетренированности спортсмена.

  1. ↑ Hultman, E., and Sjoholm, H. 1983. Energy metabolism and contraction force of skeletal muscle in-situ during electrical stimulation. Journal of Physiology 345:525-32.
  2. ↑ Bonen, A. 2001. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. European Journal of Applied Physiology 86 (1): 6-11.

sportwiki.to

Лактатная система

Первая фаза протекает без участия кислорода, вторая - с участием кислорода. При легкой физической нагрузке побочный продукт распада углеводов молочная кислота используется непосредственно во второй фазе, поэтому окончательное уравнение выглядит так:

Глюкоза + кислород + АДФ → углекислый газ + АТФ + вода

Пока потребляемого кислорода достаточно для окисления жиров и углеводов, молочная кислота не будет накапливаться в организме.

По мере увеличения интенсивности нагрузки наступает период, когда мышечная работа уже не может поддерживаться за счет одной только аэробной системы из-занехватки кислорода. С этого момента в энергообеспечение физической работы вовлекается лактатный механизмресин-тезаАТФ, побочным продуктом которого является молочная кислота. При недостатке кислорода молочная кислота, образовавшаяся в первой фазе аэробной реакции, не нейтрализуется полностью во второй фазе, в результате чего происходит ее накопление в работающих мышцах, что приводит к ацидозу, или закислению, мышц. Реакция лактатного механизма проста, и выглядит так:

Глюкоза + АДФ → молочная кислота + АТФ

Болезненность мышц - характерная черта нарастающего ацидоза (боль в ногах у велосипедиста или бегуна, боль в руках у гребца). При нарастающем ацидозе спортсмен не способен поддерживать тот же уровень нагрузки. Чаще всего ацидоз происходит в тех случаях, когда спортсмен -велосипедист,бегун или лыжник - предпринимает ускорение. Спортсмен, который способен оттягивать момент ацидоза дольше всех, с большей вероятностью выиграет гонку.

При превышении определенного уровня интенсивности (который варьируется от человека к человеку) происходит активация некоего механизма, посредством которого организм переходит на полностью анаэробное энергообеспечение, где в качестве источника энергии используются исключительно углеводы. При переходе на полностью анаэробное энергообеспечение интенсивность нагрузки в течение нескольких секунд или минут, в зависимости от интенсивности нагрузки и уровня подготовленности спортсмена, резко снижается (либо работа вовсе прекращается) вследствие накопления молочной

кислоты, которая становится причиной нарастающей мышечной усталости.

При беге на 100, 200, 400 и 800 м, а также во время любой другой интенсивной работы, длящейся 2-3мин, энергообеспечение нагрузки осуществляется в основном анаэробным путем. В беге на 1500 м вклад аэробного и анаэробного энергообеспечения примерно одинаков - 50/50. В самом начале любого упражнения, в независимости от интенсивности нагрузки, энергообеспечение происходит только анаэробным путем. Каждый раз организму требуется несколько минут для того, чтобы аэробная система полностью включилась в работу - пока легкие, сердце и системы транспорта кислорода не приспособятся к потребностям нагрузки. До того момента необходимая энергия поставляется за счет лактатного механизма.

Лактатная система также поставляет энергию при кратковременном увеличении интенсивности во время обычной аэробной нагрузки - при рывках, преодолении подъемов, попытке отрыва от преследователей. Лактатная система участвует в энергообеспечении финишного броска после продолжительной нагрузки (например, на финише марафона или велогонки).

Высокие показатели лактата, которые могут появиться во время выполнения интенсивной нагрузки, являются свидетельством несостоятельности аэробной системы. Высокие показатели лактата означают, что в энергообеспечении нагрузки подключилась лактатная система, побочным продуктом которой является молочная кислота. Максимальная концентрация лактата может достигать значений, в 20 раз превышающих таковые во время покоя. На графике 2 показаны максимальные концентрации лактата, которые достигаются спортсменами в беге на разные дистанции. Из графика видно, что максимальная концентрация достигается в беге на 400 м, затем с увеличением дистанции концентрация снижается.

Высокая концентрация лактата приводит к мышечной усталости. Если спортсмен начнет свой длительный бег в слишком высоком темпе или если он слишком рано предпримет финишный рывок, концентрация лактата в его организме возрастет до высоких значений. Усталость, которая последует за ростом концентрации лактата, не даст спортсмену выиграть гонку.

Высокая концентрация лактата приводит к ацидозу (закислению) мышечных клеток и межклеточного пространства. Ацидоз может серьезно нарушить функционирование различных механизмов внутри мышечных клеток. Систему аэробных ферментов в мышечной клетке можно рассматривать как фабрику, где зарождается аэробная энергия. Эта ферментативная система повреждается ацидозом, который снижает аэробные способности спортсмена. Если клетки повреждены ацидозом, то может потребоваться несколько дней, прежде чем ферментативная система начнет снова нормально функционировать и аэробные возможности полностью восстановятся. Когда интенсивные нагрузки повторяются очень часто (т.е. без достаточного восстановления), аэробные возможности значительно снижаются. Частое повторение интенсивных нагрузок приводит также к возникновению перетренированности. Повреждение стенок мышечных клеток под влиянием ацидоза являются причиной утечки веществ из мышечных клеток в кровь. В течение дня после напряженной тренировки в крови спортсмена можно обнаружить любые виды отклонений, в особенности большие показатели мочевины, креатинкиназы, аспартатаминотрансферазы и аланинаминотранс-феразы,которые указывают на повреждение стенок мышечных клеток.

Для того чтобы показатели крови снова пришли в норму, организму может потребоваться от 24 до 96 ч. Эти показатели нужно учитывать при выборе типа нагрузки. В данном случае тренировки должны быть легкими -восстановительными.При более интенсивных тренировках восстановление будет проходить намного дольше.

Высокие показатели лактата нарушают координационные способности. Интенсивные тренировки в сочетании с высокими

14

показателями лактата нарушают работу сократительного механизма внутри мышцы и, следовательно, также влияют на координационные возможности, которые необходимы в видах спорта, требующих высокого технического мастерства (теннис, футбол, дзюдо). Тренировки на технику никогда не следует проводить при показателях лактата выше 6-8ммоль/л, поскольку координация нарушается до такой степени, что тренировка становится просто неэффективной.

Высокие показатели лактата повышают риск возникновения травмы. Ацидоз мышечной ткани приводит к микроразрывам (незначительные повреждения мышц, которые могут стать причиной травмы в случае недостаточного восстановления). При наличии высоких показателей лактата замедляется образование КрФ. По этой причине лучше не допускать высоких показателей лактата во время спринтерских тренировок.

При высоких показателях лактата снижается утилизация жира. Это означает, что в случае истощения гликогеновых запасов энергообеспечение организма окажется под угрозой, поскольку организм будет не способен использовать жир.

Вусловиях покоя на нейтрализацию половины молочной кислоты, накопившейся в результате усилия максимальной мощности, организму требуется около 25 мин; за 1 ч 15 мин нейтрализуется 95% молочной кислоты. После интенсивной нагрузки максимальной мощности молочная кислота выводится из крови и мышц намного быстрее, если во время восстановительной фазы вместо пассивного отдыха выполняется легкая работа. Это так называемое активное восстановление, по сути, ни что иное как «заминка», которую делают многие спортсмены. Как показано на графике 3, активное восстановление - например, легкая пробежка трусцой - очень быстро снижает концентрацию лактата. Из графика также видно, что во время восстановительной фазы лучше выполнять непрерывную работу, а не интервальную.

Втаблице 1.1 приведен порядок подключения энергетических систем при физической нагрузке максимальной мощности.

studfiles.net

Лактатная система

Первая фаза протекает без участия кислорода, вторая - с участием кислорода. При легкой физической нагрузке побочный продукт распада углеводов молочная кислота используется непосредственно во второй фазе, поэтому окончательное уравнение выглядит так:

Глюкоза + кислород + АДФ → углекислый газ + АТФ + вода

Пока потребляемого кислорода достаточно для окисления жиров и углеводов, молочная кислота не будет накапливаться в организме.

По мере увеличения интенсивности нагрузки наступает период, когда мышечная работа уже не может поддерживаться за счет одной только аэробной системы из-занехватки кислорода. С этого момента в энергообеспечение физической работы вовлекается лактатный механизмресин-тезаАТФ, побочным продуктом которого является молочная кислота. При недостатке кислорода молочная кислота, образовавшаяся в первой фазе аэробной реакции, не нейтрализуется полностью во второй фазе, в результате чего происходит ее накопление в работающих мышцах, что приводит к ацидозу, или закислению, мышц. Реакция лактатного механизма проста, и выглядит так:

Глюкоза + АДФ → молочная кислота + АТФ

Болезненность мышц - характерная черта нарастающего ацидоза (боль в ногах у велосипедиста или бегуна, боль в руках у гребца). При нарастающем ацидозе спортсмен не способен поддерживать тот же уровень нагрузки. Чаще всего ацидоз происходит в тех случаях, когда спортсмен -велосипедист,бегун или лыжник - предпринимает ускорение. Спортсмен, который способен оттягивать момент ацидоза дольше всех, с большей вероятностью выиграет гонку.

При превышении определенного уровня интенсивности (который варьируется от человека к человеку) происходит активация некоего механизма, посредством которого организм переходит на полностью анаэробное энергообеспечение, где в качестве источника энергии используются исключительно углеводы. При переходе на полностью анаэробное энергообеспечение интенсивность нагрузки в течение нескольких секунд или минут, в зависимости от интенсивности нагрузки и уровня подготовленности спортсмена, резко снижается (либо работа вовсе прекращается) вследствие накопления молочной

кислоты, которая становится причиной нарастающей мышечной усталости.

При беге на 100, 200, 400 и 800 м, а также во время любой другой интенсивной работы, длящейся 2-3мин, энергообеспечение нагрузки осуществляется в основном анаэробным путем. В беге на 1500 м вклад аэробного и анаэробного энергообеспечения примерно одинаков - 50/50. В самом начале любого упражнения, в независимости от интенсивности нагрузки, энергообеспечение происходит только анаэробным путем. Каждый раз организму требуется несколько минут для того, чтобы аэробная система полностью включилась в работу - пока легкие, сердце и системы транспорта кислорода не приспособятся к потребностям нагрузки. До того момента необходимая энергия поставляется за счет лактатного механизма.

Лактатная система также поставляет энергию при кратковременном увеличении интенсивности во время обычной аэробной нагрузки - при рывках, преодолении подъемов, попытке отрыва от преследователей. Лактатная система участвует в энергообеспечении финишного броска после продолжительной нагрузки (например, на финише марафона или велогонки).

Высокие показатели лактата, которые могут появиться во время выполнения интенсивной нагрузки, являются свидетельством несостоятельности аэробной системы. Высокие показатели лактата означают, что в энергообеспечении нагрузки подключилась лактатная система, побочным продуктом которой является молочная кислота. Максимальная концентрация лактата может достигать значений, в 20 раз превышающих таковые во время покоя. На графике 2 показаны максимальные концентрации лактата, которые достигаются спортсменами в беге на разные дистанции. Из графика видно, что максимальная концентрация достигается в беге на 400 м, затем с увеличением дистанции концентрация снижается.

Высокая концентрация лактата приводит к мышечной усталости. Если спортсмен начнет свой длительный бег в слишком высоком темпе или если он слишком рано предпримет финишный рывок, концентрация лактата в его организме возрастет до высоких значений. Усталость, которая последует за ростом концентрации лактата, не даст спортсмену выиграть гонку.

Высокая концентрация лактата приводит к ацидозу (закислению) мышечных клеток и межклеточного пространства. Ацидоз может серьезно нарушить функционирование различных механизмов внутри мышечных клеток. Систему аэробных ферментов в мышечной клетке можно рассматривать как фабрику, где зарождается аэробная энергия. Эта ферментативная система повреждается ацидозом, который снижает аэробные способности спортсмена. Если клетки повреждены ацидозом, то может потребоваться несколько дней, прежде чем ферментативная система начнет снова нормально функционировать и аэробные возможности полностью восстановятся. Когда интенсивные нагрузки повторяются очень часто (т.е. без достаточного восстановления), аэробные возможности значительно снижаются. Частое повторение интенсивных нагрузок приводит также к возникновению перетренированности. Повреждение стенок мышечных клеток под влиянием ацидоза являются причиной утечки веществ из мышечных клеток в кровь. В течение дня после напряженной тренировки в крови спортсмена можно обнаружить любые виды отклонений, в особенности большие показатели мочевины, креатинкиназы, аспартатаминотрансферазы и аланинаминотранс-феразы,которые указывают на повреждение стенок мышечных клеток.

Для того чтобы показатели крови снова пришли в норму, организму может потребоваться от 24 до 96 ч. Эти показатели нужно учитывать при выборе типа нагрузки. В данном случае тренировки должны быть легкими -восстановительными.При более интенсивных тренировках восстановление будет проходить намного дольше.

Высокие показатели лактата нарушают координационные способности. Интенсивные тренировки в сочетании с высокими

14

показателями лактата нарушают работу сократительного механизма внутри мышцы и, следовательно, также влияют на координационные возможности, которые необходимы в видах спорта, требующих высокого технического мастерства (теннис, футбол, дзюдо). Тренировки на технику никогда не следует проводить при показателях лактата выше 6-8ммоль/л, поскольку координация нарушается до такой степени, что тренировка становится просто неэффективной.

Высокие показатели лактата повышают риск возникновения травмы. Ацидоз мышечной ткани приводит к микроразрывам (незначительные повреждения мышц, которые могут стать причиной травмы в случае недостаточного восстановления). При наличии высоких показателей лактата замедляется образование КрФ. По этой причине лучше не допускать высоких показателей лактата во время спринтерских тренировок.

При высоких показателях лактата снижается утилизация жира. Это означает, что в случае истощения гликогеновых запасов энергообеспечение организма окажется под угрозой, поскольку организм будет не способен использовать жир.

Вусловиях покоя на нейтрализацию половины молочной кислоты, накопившейся в результате усилия максимальной мощности, организму требуется около 25 мин; за 1 ч 15 мин нейтрализуется 95% молочной кислоты. После интенсивной нагрузки максимальной мощности молочная кислота выводится из крови и мышц намного быстрее, если во время восстановительной фазы вместо пассивного отдыха выполняется легкая работа. Это так называемое активное восстановление, по сути, ни что иное как «заминка», которую делают многие спортсмены. Как показано на графике 3, активное восстановление - например, легкая пробежка трусцой - очень быстро снижает концентрацию лактата. Из графика также видно, что во время восстановительной фазы лучше выполнять непрерывную работу, а не интервальную.

Втаблице 1.1 приведен порядок подключения энергетических систем при физической нагрузке максимальной мощности.

studfiles.net

Анаэробные алактатные способности — SportWiki энциклопедия

Анаэробные алактатные способности (АТФ-КФ)[править]

Мышцы могут хранить только небольшое количество аденозинтрифосфата (АТФ). По этой причине во время напряженной тренировки запасы энергии стремительно истощаются. Например, АТФ, хранящийся в мышцах, может служить источником энергии только для первых двух секунд рывка на максимальной скорости или первых 2-5 повторений подхода, состоящего в общей сложности из 12-15 повторений. Если по завершении 15 повторений спортсмен чувствует жжение в мышцах, подвергшихся нагрузке, это свидетельствует о том, что во время выполнения подхода в качестве источника энергии выступала как система АТФ-КФ, так и лактатная система.

В ответ на истощение запасов АТФ в мышцах происходит распад креатинфосфата (КФ), также называемого фосфокреатином, на креатин и фосфат. По аналогии с АТФ креатинфосфат хранится в мышечных клетках. В процессе преобразования КФ в креатин и фосфат энергия, непосредственно используемая для сокращения мышц, не генерируется. Вернее будет сказать, что организм использует данную энергию для ресинтеза АТФ из АДФ и фосфата. При этом АТФ, как было сказано ранее, представляет собой энергию, используемую для сокращения мышц.

Поскольку количество КФ ограничено, система АТФ-КФ может служить источником энергии только в течение очень короткого периода времени - до 8-10 секунд максимальной нагрузки (энергия для субмаксимальной нагрузки может поставляться в течение чуть более продолжительного периода времени). Данная система представляет собой основной источник энергии тела для чрезвычайно интенсивной и взрывной деятельности, такой как рывок на 60 метров, ныряние, тяжелая атлетика, прыжковые и метательные дисциплины в легкой атлетике. Поскольку пищевой креатин может увеличивать объем клеток за счет повышения содержания воды в клетках, поддерживать синтез белка, а также повышать энергоемкость анаэробной алактатной системы, с конца 90-х годов креатиновые добавки приобрели широкую популярность среди спортсменов, приоритетом для которых является сила, габариты и мощь для занятий такими видами спорта, как бег на короткие дистанции, метательные дисциплины, хоккей, футбол или бодибилдинг.

Тренировка анаэробной алактатной системы: Зона интенсивности 1[править]

Тренировка анаэробной алактатной системы является тренировкой энергетической системы для занятий всеми видами спорта, в которых анаэробная алактатная система является доминирующей, и цель данной тренировки состоит в развитии скорости и резкости. Для того чтобы извлечь пользу из тренировки в зоне интенсивности 1, спортсмены должны использовать очень короткие (длительностью не более 8 секунд), быстрые или резкие повторения или технические и тактические упражнения. Для достижения данной цели необходимо спланировать интенсивность специфических упражнений на уровне 95 процентов максимальной работоспособности с достаточно продолжительным перерывом на отдых для полного восстановления источника энергии (креатинфосфата).

Основная задача такой тренировки состоит в развитии ускорения, максимальной скорости, скорости первых шагов, быстроты реакции, а также в быстром, но непродолжительном выполнении технических и тактических упражнений за счет энергии АТФ и креатинфосфата (КФ) в мышцах. Для полного восстановления уровня КФ в мышцах спортсмену требуются продолжительные перерывы для отдыха. Если условие продолжительного отдыха не соблюдается, как это часто бывает в некоторых командных видах спорта и видах боевых искусств, КФ восстанавливается не полностью. В результате основным источником энергии становится анаэробный гликолиз (при коротких дистанциях происходит переход от алактатной работоспособности к лактатной мощности). В такой ситуации значительно увеличивается выработка молочной кислоты, что заставляет спортсмена останавливать или замедлять действие (в худшем случае возникает риск получения травмы).

У неопытных спортсменов резкий рост выработки молочной кислоты зачастую сопровождается чувством дискомфорта и жесткости в мышцах, а также снижением интенсивности работы. Этих последствий можно избежать, если обеспечить полное восстановление, которое обычно требует отдыха продолжительностью в одну минуту на каждую секунду максимального усилия между ускорением или скоростными повторениями или отдыха продолжительностью от трех до восьми минут между комплексами максимальной силы (в зависимости от процента повторного максимума, а также веса тела спортсмена, силы и нервно-мышечной эффективности). В качестве одного из способов восстановления между комплексами также может использоваться легкая растяжка или массаж мышц, подвергшихся воздействию нагрузки.

sportwiki.to

2. Алактатная, лактатная и аэробная работоспособности. Алактатная работоспособность.

Алактатная работоспособность проявляется при выполнении нагрузок в зоне максимальной мощности, то есть нагрузок, которые можно сохранить в пределах 15 – 20 сек. Такие нагрузки, преимущественно обеспечиваются креатинфосфатным способом образования АТФ, то есть алактатными способами. Поэтому мощность этих нагрузок в значительной степени зависит от содержания в мышцах креатинфосфата и активности фермента креатинкиназы, который отвечает за синтез креатинфосфата.

К основным структурным факторам, которые ограничивают алактатную работоспособность, является количество миофибрилл и развитие саркоплазматической сети. Чем меньше миофибрилл, тем медленнее и слабее мышечное сокращение. Чем хуже развита саркоплазматическая сеть, те хуже проведение мышцей нервного импульса.

К структурным факторам можно отнести количество нервно-мышечных синапсов, обеспечивающих передачу нервных импульсов от нервов к мышцам. Еще одним структурным фактором можно считать содержание в мышцах белка коллагена, участвующего в мышечном расслаблении.

Наиболее важным функциональным фактором, лежащим в основе лактатной работоспособности, является активность ферментов, участвующих в мышечной деятельности. От АТФазной активности миозина зависит количество энергии АТФ, преобразованной в механическую работу, то есть мощность выполняемых физических нагрузок. Активность кальциевого насоса определяет быстроту мышечной релаксации, от которой зависят скоростные качества мышцы.

Перечисленные структурные и функциональные факторы действуют неодинаково в мышечных волокнах разных типов.

Выделяют три типа волокон в мышцах.

1. Тонические (красные, медленные, S-волокна) содержат относительно большое количество митохондрий, много миоглобина, но мало миофибрилл. Они сокращаются медленно, развивают небольшую мощность, но длительное время.

2. Фазические (белые, быстрые, F-волокна) имеют много миофибрилл, хорошо развитую саркоплазматическую сеть, к ним подходит много нервных окончаний. Митохондрий в них значительно меньше. Это волокна, рассчитанные на высокую скорость и силу сокращения, но при этом они не могут сокращаться долго, так как работают на запасах креатинфосфата и гликогена.

3. Переходные мышечные волокна занимают по своему строению и функционированию промежуточное положение.

Соотношение между различными типами мышечных волокон генетически предрасположено. Хотя все же при усиленных тренировках можно увеличить количество миофибрилл в быстрых волокнах, увеличив тем самым их работоспособность и вызвав гипертрофию мышцы, но все же этот сдвиг не может из стайера сделать спринтера.

Лактатная работоспособность.

Лактатная работоспособность реализуется, как правило, при выполнении физических нагрузок в зоне субмаксимальной мощности продолжительностью до 5 минут. Такие нагрузки в основном обеспечиваются лактатным ресинтезом АТФ. Эти нагрузки так и называют лактатные. Их абсолютная мощность зависит от дорабочей концентрации мышечного гликогена и активности ферментов, участвующих в гликолизе.

Возможности лактатного компонента работоспособности обусловлены практически теми же структурными и функциональными факторами, описанными выше в отношении алактатной работоспособности. Однако их влияние менее выражено, так как за счет лактатного компонента выполняется работа с меньшей силой и скоростью по сравнению с лактатными нагрузками.

В отличие от алактатного компонента, очень важным фактором, влияющим на лактатную работоспособность, являются компенсаторные возможности организма, обеспечивающие устойчивость к возрастанию кислотности.

При бурном течении гликолиза происходит образование и накопление в мышечных волокнах больших количеств лактата. Происходит сдвиг рН в кислую сторону. При этом происходят конформационные изменения мышечных белков-ферментов, что приводит к снижению их активности. Отрицательно меняется и сократительная способность мышечных клеток.

Нейтрализация молочной кислоты осуществляется буферными системами за счет щелочных компонентов. Однако буферная емкость организма и особенно крови под влиянием тренировок практически не меняется. В настоящее время считается, что развитие резистентности к повышению кислотности у высокотренированных спортсменов связано не с увеличением щелочного резерва организма, а с выработкой новых, более устойчивых к изменению рН изоферментов и с формированием комплекса приспособительных механизмов, дающих организму возможность работать в условиях значительного закисления.

Еще один функциональный фактор, влияющий на лактатную работоспособность - это наличие в мышцах фермента лактатдегидрогеназы. Этот фермент предпочтительно катализирует превращение пировиноградной кислоты в молочную и наоборот. Лактатдегидрогеназа является причиной высокой работоспособности скелетных мышц с большим содержанием быстрых волокон.

studfiles.net

Энергетические запасы

Запасы АТФ истощаются через 2-3с работы максимальной мощности. КрФ полностью расходуется через8-10с максимальной работы, аглико-геновыезапасы истощаются через60-90мин субмаксимальной работы. Запасы жира практически неисчерпаемы (см. график 4).

В 1 г жира содержится 9 ккал, а в 1 г углеводов - 4 ккал. Жиры в организме не связаны с водой, а вот углеводы связаны со значительным количеством воды. Если в нашем организме энергетические запасы в виде жиров заменить на углеводы, то масса нашего тела увеличится вдвое. Именно по этой причине перелетные птицы запасают исключительно жиры для энергии. Таким образом, в весовом исчислении жиры являются эффективным источником энергии. Жир - идеальный источник энергии для продолжительных нагрузок при ограниченном поступлении пищи.

Общие запасы углеводов в организме составляют от 2000 до 3000 ккал. Организм человека обладает огромной способностью откладывать жиры. Несмотря на это их запасы могут сильно варьироваться. Доля жировой массы у мужчин составляет от 10 до

20%; у женщин - от 20 до 30%.

16

Таблица 1.1 Подключение различных механизмов энергообеспечения в зависимости от продолжительности нагрузки максимальной мощности

Продолжи

Механизмы

Источники

Примечания

тельность

энергообеспечения*2

энергии

 

нагрузки

 

 

 

1-5с

Анаэробный алактатный

АТФ

 

 

(фосфатный)

 

 

6-8с

Анаэробный алактатный

АТФ + КрФ

 

 

(фосфатный)

 

 

9-45с

Анаэробный алактатный

АТФ, КрФ +

Большая выработка

 

(фосфатный) +

гликоген

лактата

 

анаэробный лактатный

 

 

 

(лактатный)

 

 

45-120с

Анаэробный лактатный

Гликоген

По мере увеличения

 

(лактатный)

 

продолжительности

 

 

 

нагрузки выработка

 

 

 

лактата снижается

120-240с

Аэробный (кислородный)

Гликоген

 

 

+ анаэробный лактатный

 

 

 

(лактатный)

 

 

240-600с

Аэробный

Гликоген +

Чем больше доля

 

 

жирные

участия жирных кислот

 

 

кислоты

в энергообеспечении

 

 

 

нагрузки, тем больше ее

 

 

 

продолжительность

У хорошо тренированных спортсменов на выносливость показатель жира составляет в среднем 10%. Идеальный процент жира может различаться от спортсмена к спортсмену и находиться в диапазоне от максимально низкого (4-5%)до относительно высокого(12-13%).Однако у каждого спортсмена существует свой идеальный процент жира, который неизменен, и этот процент жира является важным показателем физического состояния спортсмена. Слишком высокий или слишком низкий процент жира будет мешать спортсмену в достижении максимальной формы.

2 * Анаэробный - без участия кислорода; аэробный - с участием кислорода. Алактатный-молочнаякислота не вырабатывается; лактатный - молочная кислота вырабатывается.

studfiles.net

Основы энергообеспечения мышечной деятельности - Диагностер

Конспект по мотивам «ЧСС, лактат и тренировки на выносливость» (Янсен Петер)

Работающим мышцам необходима энергия. Аденозинтрифосфат (АТФ) — это универсальный источник энергии. АТФ распадается до аденозиндифосфата (АДФ). При этом высвобождается энергия.

АТФ → АДФ + энергия

При интенсивной мышечной работе запасы АТФ расходуются за 2 секунды. АТФ непрерывно восстанавливается (ресинтез) из АДФ. Выделяют три системы ресинтеза АТФ:

  • фосфатную,
  • лактатную,
  • кислородную.

Фосфатная система ресинтеза АТФ

Быстрый ресинтез АТФ в мышцах идет за счет креатинфосфата (КрФ). Запаса КрФ в мышцах хватает на 6-8 секунд интенсивной работы.

КрФ + АДФ → АТФ + креатин

При максимальной нагрузке фосфатная система истощается в течение 10 секунд. В первые 2 секунды расходуется АТФ, а затем 6-8 секунд — КрФ. Через 30 секунд после физической нагрузки запасы АТФ и КрФ восстанавливаются на 70%, а через 3-5 минут — полностью.

Фосфатная система важна для взрывных и кратковременных видов физической активности — спринтеры, футболисты, прыгуны в высоту и длину, метатели диска, боксеры и теннисисты.

Для тренировки фосфатной системы непродолжительные энергичные упражнения чередуют с отрезками отдыха. Отдых должен быть достаточно длительным, чтобы успел произойти ресинтез АТФ и КрФ (график 1).

Восстановление АТФ и Крф

Через 8 недель спринтерских тренировок количество ферментов, которые отвечают за распад и ресинтез АТФ, увеличится. После 7 месяцев тренировок на выносливость в виде бега три раза в неделю запасы АТФ и КрФ вырастут на 25-50%. Это повышает способность спортсмена показать результат в видах деятельности, которые длятся не более 10 секунд.

Фосфатная система ресинтеза АТФ называется анаэробной и алактатной, потому что не нужен кислород и не образуется молочная кислота.

Кислородная система ресинтеза АТФ

Кислородная (аэробная) система ресинтеза АТФ поддерживает физическую работу длительное время и важна для спортсменов на выносливость. Энергия выделяется при взаимодействие углеводов и жиров с кислородом. Окисление углеводов требует на 12% меньше кислорода по сравнению с жирами. При физических нагрузках в условиях нехватки кислорода энергообразование происходит в первую очередь за счет окисления углеводов. После исчерпания запаса углеводов к энергообеспечению подключаются жиры.  Запаса углеводов (гликоген в печени и мышцах) хватает на 60-90 минут работы субмаксимальной интенсивности. Запасы жиров в организме неисчерпаемы.

Важно!!! Тренированный спортсмен будет использовать больше жиров и меньше углеводов по сравнению с неподготовленным человеком. Тренированный человек экономит углеводы, запасы которых небезграничны.

Окисление жиров:

Жиры + кислород + АДФ  → АТФ + углекислый газ +  вода

Углекислый газ выводится из организма легкими.

Распад углеводов (гликолиз):

Первая фаза: глюкоза + АДФ → АТФ + молочная кислота

Вторая фаза: молочная кислота + кислород + АДФ → АТФ + углекислый газ + вода

Чем больше кислорода способен усвоить организм человека, тем выше аэробные способности. Высокие показатели лактата во время нагрузки указывают на несостоятельность аэробной системы. Тренировки могут улучшить аэробные способности на 50%. При недостатке кислорода молочная кислота накапливается в работающих мышцах, что приводит к ацидозу (закислению) мышц.  Болезненность мышц — это характерная черта нарастающего ацидоза (боль в ногах у велосипедиста или бегуна, боль в руках у гребца).

Важно!!! Ацидоз начинается на ускорение. При нарастающем ацидозе спортсмен не способен поддерживать тот же уровень нагрузки. Спортсмен, способный оттягивать момент ацидоза, с большей вероятностью выиграет гонку.

Лактатная система ресинтеза АТФ

Прсле определенного уровня интенсивности работы организм переходит на бескислородное (анаэробное) энергообеспечение, где источник энергии — исключительно углеводы. Интенсивность мышечной работы резко снижается из-за накопления молочной кислоты (лактата).

Глюкоза + АДФ → молочная кислота + АТФ

Ресинтез АТФ идет за счет лактатного механизма:

  • несколько минут в начале любого упражнения пока легкие, сердце и системы транспорта кислорода не приспособятся к потребностям нагрузки;
  • при беге на 100, 200, 400 и 800 м, а также во время любой другой интенсивной работы, длящейся 2-3 мин;
  • в беге на 1500 м вклад аэробного и анаэробного энергообеспечения — 50/50;
  • при кратковременном увеличении интенсивности работы — при рывках, преодолении подъемов, во время финишного броска, например, на финише марафона или велогонки.

Лактат может быть в 20 раз выше нормы. Максимальная концентрация молочной кислоты достигается в беге на 400 м. С увеличением дистанции концентрация лактата снижается (График 2).

Лактат у бегунов

Отрицательные эффекты высокого лактата

  • Мышечная усталость. Если начать длительный бег в высоком темпе или рано приступить к финишному рывку, мышечная усталость, вслед за ростом концентрации лактата, не даст спортсмену выиграть гонку.
  • Ацидоз (закисление) мышечных клеток и межклеточного пространства. Может потребоваться несколько дней, чтобы ферменты снова нормально функционировали и аэробные возможности полностью восстановились. Частое повторение интенсивных нагрузок (без достаточного восстановления) приводит к перетренированности.
  • Повреждение мышечных клеток. После напряженной тренировки в крови повышается уровень мочевины, креатинкиназы, аспартатаминотрансферазы (АсАТ) и аланинаминотрансферазы (АлАТ). Это указывает на повреждение клеток. Чтобы показатели крови снова пришли в норму требуется от 24 до 96 ч. В это время тренировки должны быть легкими — восстановительными.
  • Нарушение мышечного сокращения влияет на координацию. Тренировки на технику не следует проводить если лактат выше 6-8 ммоль/л.
  • Микроразрывы. Незначительные повреждения мышц могут стать причиной травмы при недостаточном восстановление.
  • Замедляется образование КрФ. Лучше не допускать высоких показателей лактата во время спринтерских тренировок.
  • Снижается утилизация жира. При истощение запасов гликогена энергообеспечение окажется под угрозой, поскольку организм будет не способен использовать жир.

На нейтрализацию половины накопившейся молочной кислоты требуется около 25 минут; за 1 час 15 минут нейтрализуется 95% молочной кислоты. Активное восстановление («заминка») очень быстро снижает лактат. В восстановительной фазе лучше выполнять непрерывную, а не интервальную работу (График 3).

Восстановление

Энергетические запасы

Важно!!! Запаса АТФ хватает на 2-3 секунды работы максимальной мощности. Креатинфосфат (КрФ) расходуется через 8-10 секунд максимальной работы. Гликогеновые запасы заканчиваются через 60-90 минут субмаксимальной работы. Запасы жира практически неисчерпаемы (График 4).

Энергообеспечение во времени

Таблица 1.1 Порядок подключения энергетических систем при физической нагрузке максимальной мощности. Анаэробный — без участия кислорода; аэробный — с участием кислорода. Алактатный — молочная кислота не вырабатывается; лактатный — молочная кислота вырабатывается.

Продолжительность нагрузки

Механизмы энергообеспечения

Источники энергии

Примечания

1-5 секунд

Анаэробный алактатный (фосфатный)

АТФ

6-8 секунд

Анаэробный алактатный (фосфатный)

АТФ + КрФ

9-45 секунд

Анаэробный алактатный (фосфатный) + анаэробный лактатный (лактатный)

АТФ, КрФ + гликоген

Большая выработка лактата

45-120 секунд

Анаэробный лактатный (лактатный)

Гликоген

По мере увеличения продолжительности нагрузки выработка лактата снижается

2-4 минуты

Аэробный (кислородный) + анаэробный лактатный (лактатный)

Гликоген

4-10 минут

Аэробный

Гликоген + жирные кислоты

Чем выше доля жирных кислот в энергообеспечении, тем дольше продолжительность нагрузки

Важно!!! В 1 г жира 9 ккал, а в 1 г углеводов 4 ккал. Жиры не связаны с водой, а углеводы связаны с большим количеством воды. Если запасы в виде жиров заменить на углеводы, то масса нашего тела увеличится вдвое. В весовом исчислении жиры являются эффективным источником энергии. Поэтому перелетные птицы запасают исключительно жиры.  Жир — идеальный источник энергии для продолжительных нагрузок при ограниченном поступление пищи.

У спортсменов на выносливость показатель жира в среднем 10%. Это важный показатель физического состояния спортсмена. У каждого спортсмена существует свой идеальный процент жира.  Идеальный процент жира находиться в диапазоне от максимально низкого (4-5%) до относительно высокого (12-13%).

Запаса углеводов хватает в среднем на 95 минут марафонского бега, жировых запасов хватит на 119 часа. Но чтобы получить энергию из жира требуется больше кислорода. Из углеводов можно синтезировано больше АТФ в единицу времени. Поэтому углеводы — это главный источник энергии во время интенсивных нагрузок. Когда заканчиваются запасы углеводов, вклад жира в энергообеспечение работы возрастает, а интенсивность нагрузки снижается. В марафоне это происходит в районе 30-километровой отметки — после 90 минут бега.

diagnoster.ru